Capítulo 6

Limites de Funções

No Capítulo 3 fizemos um estudo de limites. Só que aquele limite estudado era um caso particular, onde a função era da forma $f: \mathbb{N} \to \mathbb{R}$. Nesse capítulo vamos estudar o caso geral, onde $X \subset \mathbb{R}$ é um subconjunto qualquer e $f: X \to \mathbb{R}$ é também uma função qualquer.

6.1 Definição e Primeiras Propriedades

Definição 6.1.1 Sejam $X \subset \mathbb{R}$ um subconjunto de números reais, $a \in X'$ e $f: X \subset \mathbb{R} \to \mathbb{R}$ uma função real de uma variável real. Dizemos que o número real L é o Limite de f(x) quando x tende a a, e escrevemos

$$\lim_{x \to a} f(x) = L$$

quando, para todo $\epsilon > 0$ dado arbitrariamente, podemos obter $\delta > 0$ tal que se tenha $|f(x) - L| < \epsilon$ sempre que $x \in X$ e $0 < |x - a| < \delta$.

De uma maneira simbólica temos que:

$$\lim_{x \to a} f(x) = L := \forall \ \epsilon > 0, \ \exists \ \delta > 0; x \in X, 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon.$$

Outra maneira de lermos a definição de limite é " $\lim_{x\to a} f(x) = L$ quer dizer que podemos tomar f(x) tão próximo de L quanto se queira, para isso, é preciso tomar $x \in X$ suficientemente próximo de a, porém diferente de a.

Exemplo 6.1.1 Seja
$$f(x) = 4x - 7$$
. Mostre que $\lim_{x \to 3} f(x) = 5$.

Solução: Seja $\epsilon > 0$. Temos que $\lim_{x \to 3} f(x) = 5$ se existe $\delta > 0$ tal que se tenha $|f(x) - 5| < \epsilon$, sempre que $0 < |x - 3| < \delta$ e $x \in \mathbb{R}$. Observe que

$$|f(x) - 5| = |(4x - 7) - 5| = |4x - 12| = 4|x - 3| < 4\delta.$$

Assim, se $\delta = \frac{\epsilon}{4}$, temos que $|f(x) - 5| < \epsilon$, sempre que $0 < |x - 3| < \delta$. Portanto, $\lim_{x \to 3} f(x) = 5$.

Exemplo 6.1.2 *Prove que* $\lim_{x\to 2} (x^2) = 4$.

Solução: Seja $\epsilon>0$. Temos que $\lim_{x\to 2}(x^2)=4$ se existe $\delta>0$ tal que $|x^2-4|<\epsilon$ sempre que $x\in\mathbb{R}$ e $0<|x-2|<\delta$. Observe que

$$|x-2| < \delta \Leftrightarrow |x^2-4| = |x-2|.|x+2| < \delta|x+2|.$$

Na definição de limite, é natural pensarmos que os números ϵ e δ são números pequenos, visto que desejamos estudar o comportamento do valor da função quando os elementos do domínio se aproxima de a. Por isso, podemos tomar $\delta < 1$. Assim,

$$|x-2| < \delta \le 1 \Leftrightarrow -1 < x-2 < 1 \Leftrightarrow 3 < x+2 < 5 \Leftrightarrow$$

 $\Leftrightarrow -5 < x+2 < 5 \Leftrightarrow |x+2| < 5.$

Logo, se $\delta = \min\left\{1, \frac{\epsilon}{5}\right\}$, segue que $|x^2 - 4| < \epsilon$ sempre que $0 < |x - 2| < \delta$. Portanto, $\lim_{x \to 2} (x^2) = 4$.

- Observação 6.1.1 1. A restrição 0 < |x-a| equivale a dizer que $x \neq a$, ou seja, o limite de uma função quando $x \to a$ existe, mesmo quando f(a) não está definido, visto que deseja-se entender o comportamento da função quando se aproxima de a, não importando o que acontece no próprio ponto a.
 - 2. Na definição de limite é essencial que a seja um ponto de acumulação de X pois, caso contrário, existiria um ε > 0 tal que (a ε, a + ε) ∩ X = Ø e, por isso, não existiria o limite. Porém, o fato de a ser ou não, um elemento de X é irrelevante.
 - 3. Uma das aplicações mais importantes de limite está relacionada com a Derivada de uma função, onde estuda-se o limite $\lim_{x\to a} q(x)$, com $q(x) = \frac{f(x) f(a)}{x a}$, que não está definido para x = a.
 - 4. Negar a definição de limite equivale a dizer que existe um número $\epsilon > 0$ com a seguinte propriedade: para todo $\delta > 0$, podemos encontrar um $x \in X$ tal que $0 < |x a| < \delta$ mas $|f(x) L| \ge \epsilon$.

Teorema 6.1.1 Sejam $f, g: X \subset \mathbb{R} \to \mathbb{R}$ funções reais de uma variável real, $a \in X'$, $\lim_{x \to a} f(x) = L$ e $\lim_{x \to a} g(x) = M$. Se L < M, então, existe $\delta > 0$ tal que f(x) < g(x) para todo $x \in X$ tal que $0 < |x - a| < \delta$.

Demonstração: Seja $K = \frac{L+M}{2}$. Tome $\epsilon = K - L = M - K$, então, $\epsilon > 0$ e, além disso, $K = L + \epsilon = M - \epsilon$. Pela definição de limite, temos que:

• existe $\delta_1 > 0$ tal que $x \in X$, $0 < |x - a| < \delta_1 \Rightarrow |f(x) - L| < \epsilon$, ou seja, $L - \epsilon < f(x) < L + \epsilon = K$;

• existe $\delta_2 > 0$ tal que $x \in X$, $0 < |x - a| < \delta_2 \Rightarrow |g(x) - M| < \epsilon$, ou seja, $K = M - \epsilon < q(x) < L + \epsilon$.

Assim, tomando $\delta = \max\{\delta_1, \delta_2\}$, temos que $x \in X$, $0 < |x - a| < \delta \Rightarrow f(x) < K < g(x)$, terminando a demonstração do resultado.

- Observação 6.1.2 1. A hipótese L < M não pode ser substituída por $L \le M$ no Teorema 6.1.1. Por exemplo, as funções f(x) = sen(x) e $g(x) = \frac{1}{x}$ ambas convergem para zero, quando $x \to 0$, mas sempre existem $x_1 < x_2 < x_3 < x_4$ tais que $f(x_1) \le g(x_2)$ e $g(x_3) \le f(x_4)$.
 - 2. No Teorema 6.1.1 podemos tomar > no lugar de < que o resultado permanece válido (basta trocar f por g na demonstração que o resultado sai naturalmente) e, por isso, essa troca ser usada sem mais comentários.

Corolário 6.1.1 Se $\lim_{x\to a} f(x) = L < M$, então, existe $\delta > 0$ tal que f(x) < M, para todo x tal que $0 < |x-a| < \delta$.

Demonstração: Tome g(x) = M, para todo x e aplique o Teorema 6.1.1.

Corolário 6.1.2 Sejam $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = M$. Se $f(x) \leq g(x)$ para todo $x \in X \setminus \{a\}$, então, $L \leq M$.

Demonstração: Suponha que M < L. Então, pelo Teorema 6.1.1 temse que existe $\delta > 0$ tal que g(x) < f(x) para todo $x \in X$, o que é uma contradição com a hipótese.

Teorema 6.1.2 (Teorema do Sanduíche:) Sejam $f, g, h : X \subset \mathbb{R} \to \mathbb{R}$ funções reais de uma variável real, $a \in X'$, $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L$. Se $f(x) \leq h(x) \leq g(x)$, para todo $x \in X \setminus \{a\}$, então, $\lim_{x \to a} h(x) = L$.

Demonstração: Seja $\epsilon > 0$. Pela definição de limite, temos que:

- existe $\delta_1 > 0$ tal que $x \in X$, $0 < |x a| < \delta_1 \Rightarrow |f(x) L| < \epsilon$, ou seja, $L \epsilon < f(x) < L + \epsilon$;
- existe $\delta_2 > 0$ tal que $x \in X$, $0 < |x-a| < \delta_2 \Rightarrow |g(x)-L| < \epsilon$, ou seja, $L-\epsilon < g(x) < L+\epsilon$.

Assim, tomando $\delta = \min\{\delta_1, \delta_2\}$, temos que $x \in X$, $0 < |x-a| < \delta \Rightarrow f(x) \le h(x) \le g(x)$, ou seja, dado $\epsilon > 0$, existe um $\delta > 0$ tal que $h(x) \in]L - \epsilon, L + \epsilon[$ sempre que $x \in X$, $0 < |x-a| < \delta$ e, portanto, $\lim_{x \to a} h(x) = L$.

Observação 6.1.3 A noção de limite é local, ou seja, dadas as funções $f, g: X \subset \mathbb{R} \to \mathbb{R}$ e dado $a \in X'$, se existir uma vizinhança V do ponto a tal que f(x) = g(x), para todo $x \in V \cap (X \setminus \{a\})$, então, existe $\lim_{x \to a} f(x)$ se, e somente se, existe $\lim_{x \to a} g(x)$.

Teorema 6.1.3 Sejam $f: X \subset \mathbb{R} \Rightarrow \mathbb{R}$ e $a \in X'$. Assim, $\lim_{x \to a} f(x) = L$ se, e somente se, toda sequência de pontos $x_n \in X \setminus \{a\}$, $com \ x_n \to a$, tenhamos que $\lim f(x_n) = L$.

Demonstração: (\Rightarrow) Como $\lim_{x\to a} f(x)$, dado $\epsilon > 0$, existe $\delta > 0$ tal que

$$x \in X \in 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon$$
.

Seja $x_n \in X \setminus \{a\}$ uma sequência com $x_n \to a$. Então, existe um $n_0 \in \mathbb{N}$ tal que se $n > n_0$, então, $0 < |x_n - a| < \delta$. Portanto, para todo $n > n_0$, temos que $x_n \in X \setminus \{a\}$, $0 < |x_n - a| < \delta \Rightarrow |f(x_n) - L| < \epsilon$, ou seja, $\lim f(x_n) = L$.

(\Leftarrow) Suponha que a recíproca não seja verdadeira, ou seja, que toda sequência de pontos $x_n \in X \setminus \{a\}$, com $x_n \to a$, tenhamos que $\lim f(x_n) = L$ mas $\lim_{x\to a} f(x) \neq L$. Assim, existe um $\epsilon > 0$ tal que para todo $n \in \mathbb{N}$ existe $x_n \in X \setminus \{a\}$, com $0 < |x_n - a| < \frac{1}{n}$, mas $|f(x) - L| \ge \epsilon$. Assim, $x_n \in X \setminus \{a\}$, com $x_n \to a$, mas $\lim_{x\to a} f(x_n) \neq x$, o que contraria a hipótese. Portanto, $\lim_{x\to a} f(x_n) = L$.

Corolário 6.1.3 (Unicidade do Limite:) Sejam $f: X \subset \mathbb{R} \to \mathbb{R}$ e $a \in X'$. Se $\lim_{x \to a} f(x) = L$ e $\lim_{x \to a} f(x) = M$, então, L = M.

Demonstração: Seja (x_n) uma sequência de pontos de $X \setminus \{a\}$ tal que $x_n \to a$. Assim, temos que $L = \lim f(x_n)$ e $M = \lim f(x_n)$. Daí, do Teorema 3.1.1, segue que M = L.

Corolário 6.1.4 Sejam $f,g:X\subset\mathbb{R}\to\mathbb{R}$ e $a\in X'$, com $\lim_{x\to a}f(x)=L$ e $\lim_{x\to a}g(x)=M$. Então,

- 1. $\lim_{x \to a} (f \pm g)(x) = L \pm M;$
- 2. $\lim_{x \to a} (f \cdot g)(x) = L \cdot M;$
- 3. $\lim_{x\to a} \left(\frac{f}{g}\right)(x) = \frac{G}{M}$, so $M \neq 0$;
- 4. Se $\lim_{x\to a} f(x) = 0$ e se g é limitada numa vizinhança de a, então, temos que $\lim_{x\to a} (f\cdot g)(x) = 0$.

Demonstração: Basta tomar uma sequência de pontos de $X \setminus \{a\}$ tal que $x_n \to a$ e aplique os Teoremas 3.3.1 e 3.3.2.

Teorema 6.1.4 Sejam $f: X \subset \mathbb{R} \to \mathbb{R}$ e $a \in X'$. Se existe $\lim_{x \to a} f(x)$, então, $f \notin limitada$ numa vizinhança de a, isto \acute{e} , exitem $\delta, c > 0$ tais que

$$x \in X, \ 0 < |x - a| < \delta \Rightarrow |f(x)| \le c.$$

Demonstração: Tome $\epsilon = 1$. Como $\lim_{x \to a} f(x) = L$, existe $\delta > 0$ tal que $x \in X$, $0 < |x - a| < \delta \Rightarrow |f(x) - L| < 1$. Assim,

$$|f(x)| = |f(x) - L + L| \le |f(x) - L| + |L| < |L| + 1.$$

Assim, tomando c = |L| + 1, temos o resultado.

Exemplo 6.1.3 1. Seja $f : \mathbb{R} \to \mathbb{R}$ dada por f(x) = c, onde $c \in \mathbb{R}$ é uma constante. Então, $\lim_{x \to a} f(x) = c$.

- 2. Seja $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = x. Então, $\lim_{x \to a} f(x) = a$.
- 3. Seja $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \sum_{i=0}^{n} a_i x^i$, $a_i \in \mathbb{R}$ (para todo i), um polinômio, ou seja, $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$. Então, $\lim_{x \to a} f(x) = f(a)$.
- 4. Sejam, f e g dois polinômios. Então, $\lim_{x\to a} \frac{f}{g}(x) = \frac{f(a)}{g(a)}$, se $g(a) \neq 0$.
- 5. Seja $h(x) = \frac{f(x)}{g(x)}$ uma função racional, com g(a) = 0. Assim, podemos reescrever $f(x) = (x-a)^m f_1(x)$ e $g(x) = (x-a)^n g_1(x)$, com $f_1(a) \neq 0$ e $g_1(a) \neq 0$.
 - Se m=n, então, $h(x)=\frac{f(x)}{g(x)}=\frac{f_1(x)}{g_1(x)}$ e, consequentemente, $\lim_{x\to a}h(x)=\frac{f_1(a)}{g_1(a)}.$
 - Se m < n, então, o numerador tende a uma constante $c \neq 0$ e o denominador tende a zero. Isso implica que $\lim_{x \to a} h(x)$ não existe.
 - Se m > n, então, o numerador tende a zero e o denominador tende a uma constante $c \neq 0$. Isso implica que $\lim_{x \to a} h(x) = 0$.

Exemplo 6.1.4 Seja $X = \mathbb{R} \setminus \{0\}$. Então, temos que $0 \in X'$. Considere $f: X \to \mathbb{R}$ dada por $f(x) = sen\left(\frac{1}{X}\right)$. Então, temos que $\lim_{x\to 0} f(x)$ não existe.

De fato: Tome $x_n = \frac{2}{(2n-1)\pi}$ é tal que $\lim_{x\to 0} x_n = 0$, mas $\lim_{x\to 0} f(x) = \pm 1$, dependendo da paridade de n. Portanto, $\lim_{x\to 0} f(x)$ não existe.

Exemplo 6.1.5 Seja $X = \mathbb{R} \setminus \{0\}$. Então, temos que $0 \in X'$. Considere $g: X \to \mathbb{R}$ dada por $g(x) = xsen\left(\frac{1}{X}\right)$. Então, temos que $\lim_{x\to 0} f(x) = 0$.

De fato: Temos $x \to 0$ e que $\left| sen\left(\frac{1}{X}\right) \right| \le 1$. Portanto, $\lim_{x \to 0} g(x) = 0$. \square

Observação 6.1.4 Os gráficos das funções apresentadas nos Exemplos 6.1.4 e 6.1.5 estão apresentados na Figura 6.1.4. Observe como o comportamento de cada uma das funções é diferente quando x tende de zero.

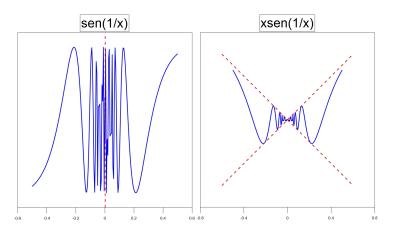


Figura 6.1: Esboço do gráfico das funções $f(x) = sen\left(\frac{1}{X}\right) e g(x) = xsen\left(\frac{1}{X}\right)$.

Exemplo 6.1.6 Seja $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = 0 se $x \in \mathbb{Q}$ e f(x) = 1 se $x \in \mathbb{Q}^C$. Assim, $\lim_{x \to 0} f(x)$ não existe.

Solução: Dado qualquer $a \in \mathbb{R}$, temos que existe uma sequência $x_n \neq a$, só de números racionais, que converge para a e, por isso, $x_n \to a$ e $f(x_n) \to 0$. Analogamente, temos que existe uma sequência $y_n \neq a$, só de números irracionais, que converge para a e, por isso, $y_n \to a$ e $f(x_n) \to 1$. Portanto, $\lim_{x\to 0} f(x)$ não existe.

Observação 6.1.5 Dois dos limites muito importantes na matemática são:

$$\lim_{x \to 0} \frac{sen(x)}{x} = 1 \ e \ \lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

A demonstração desses resultados exigem um tratamento mais rigoroso das funções trigonométricas e exponencial, o que não será feito nesse curso e, por isso, as mesmas podem ser obtidas nas referências básicas.