

Universidade Federal de São João del-Rei - UFSJ Departamento de Matemática e Estatística - DEMAT

Prova	3^a Avaliação de Análise - $17/12/2019$
Prof.	Carlos Alberto da Silva Junior
Valor	30.0 pontos
Aluno(a):	

- Escolha 5 (cinco) das 6 (seis) questões abaixo, assinalando a opção escolhida para não ser corrigida no parêntese indicado
- Só serão corrigida 5 (cinco) questões, e se não for indicada qual a opção a ser desconsiderada, serão corrigidas as 5 primeiras questões.
- A prova pode ser feita a caneta ou a lápis; Horário de prova: das 19:30 as 22:00.
- Não é permitido o uso de nenhum equipamento eletrônico durante a prova, sendo que o uso de qualquer equipamento pode ser considerado cola e a prova será anulada.

1. () Questão (Valor 6.0 Pontos):

- a) Defina Ponto Interior.
- b) Defina Conjunto Aberto.
- c) Prove que a reunião qualquer de conjuntos aberto é ainda um conjunto aberto.

2. () Questão (Valor 6.0 Pontos):

- a) Defina Ponto Aderente a um conjunto.
- b) Prove que $\mathring{A} \subset A \subset \overline{A}$, para todo conjunto $A \subset \mathbb{R}$.
- c) Prove que a interseção de dois conjuntos fechados é ainda um conjunto fechado.
- 3. () Questão (Valor 6.0 Pontos): Enuncie e demostre o Teorema de Borel-Lebesgue.

4. () Questão (Valor 6.0 Pontos):

- a) Defina Limite de uma função.
- b) Enuncie e demonstre o Teorema do Sanduíche.

5. () Questão (Valor 6.0 Pontos):

- a) Seja $p: \mathbb{R} \to \mathbb{R}$ um polinômio de grau ímpar, dado por $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$. Mostre que p possui pelo menos uma raiz real.
- b) Construa um conjunto limitado de números reais com exatamente três pontos de acumulação.
- 6. () Questão (Valor 6.0 Pontos): Seja $f: X \to Y$ uma função contínua. Mostre que se X é compacto, então, f(X) também é compacto.

Boa Prova!!!!!!!!!!!!!